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Abstract. Linear stability analysis and (numerical) investigation of the periodic and chaotic self-pulsing
behaviour are presented for the Maxwell-Bloch equations of a bistable model in contact with a squeezed
vacuum field. Effect of the squeeze phase parameter on the period doubling bifurcation that preceeds chaos
is examined for the adiabatic and non-adiabatic regimes.
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1 Introduction

As seen in Part I of this paper [1] the input-output nonlin-
ear relationship y = f(x) (y is the (real) input field ampli-
tude and x is the output field amplitude) of a bistable sys-
tem is represented by an S-shape curve of three branches
in which the intermediate branch has a negative slope
where d|x|/dy < 0, i.e. unstable. However, it is not true
that branches of positive slope where d|x|/dy > 0 are al-
ways stable. This was first shown, theoretically and ex-
perimentally, by McCall [2] in a hybrid bistable device
where a cw laser input was converted into a train of
light pulses. Subsequently Bonifacio and Lugiato [3] and
Bonifacio et al. [4] gave linear stability analysis for an ab-
sorptive optical bistability (OB) system (in normal vac-
uum) in a ring cavity and showed that, under certain con-
ditions, part of the positive slope (upper) branch of the
OB curve is unstable. The analysis was later generalized to
the dispersive case [5] (also see [6] and references therein).

In this Part II, we present a linear stability analysis
and investigate the self-pulsing and chaotic behaviour of
the bistable model in a squeezed vacuum considered in [1]
in both cases of the absorptive and dispersive OB.

2 Stability analysis

2.1 Absorptive case

Without early adoption of the (spatial) mean field
limit (cf. [1]) the stationary solutions of the model
equations (Eqs. (2b, 2c)) of [1] for the matter variables

are space-dependent and are given in the absorptive case
(δ = θ = 0) by (we put g = γ/(2

√
2) for direct comparison

with [2,3])

Jst
z (z) = − γ

2γ‖

[
1 + b1(z)|αst(z)|2

]−1
, (1a)

Jst
− (z) = −

√
2
γ‖

[
1 + b1(z)|αst(z)|2

]−1

×
[
Goα

st(z)− γM
(
αst(z)

)∗]
= (Jst

+ (z))∗ (1b)

where Go = (γ/2)(1 + 2N) and b1(z) = 1 −
2|M | cos(φ(z))/(1 + 2N), whilst the stationary solution
for the field (Eq. (2a) of [1]) is given by

c
dαst(z)

dz
= − γ

2
√

2
Jst
− (z). (1c)

To study the stability of the stationary solutions we in-
troduce the small deviations δα and δJ±,z

α(z, t) = δα(z, t) + αst(z)

J−(z, t) = δJ−(z, t) + Jst
− (z) = (J+(z, t))∗

Jz(z, t) = δJz(z, t) + Jst
z (z) (2)

where the boundary conditions (cf. Eqs. (1) of [1]) for
δα(z, t) now reads (for θ = 0),

δα(0, t) = (1− T )δα(L , t−∆t). (3)
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By substituting equations (2) into equations (1) and dis-
carding the bilinear terms in (δα δJ±) and (δα δJz) we
get the following set of the linearized equations for the
deviations

∂

∂t
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γ

2
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2
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]
(4a)
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2
√

2
δJ−(z, t). (4c)

Now we look for solutions of equations (4) in the form

δαλ(z, t) = δαλ(z) exp(λt) + c.c.

δJλz (z, t) = δJλz (z) exp(λt) + c.c.

δJλ−(z, t) = δJλ−(z) exp(λt) + c.c. (5)

Hence from equations (4, 5) one gets the following equa-
tion for the field deviation δαλ(z),

d
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(
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)
= [B(z)− λ/c] δαλ(z) +D(z)
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where
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with
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4c
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γ2

4
Jst
z

|λ+Go|2 − γ2|M |2 , (7c)

αst ≡ αst(z) and Jst
z,± ≡ Jst

z,±(z) are given by equa-
tions (1a, 1b). Within the mean field limit, the quantities

B(z), D(z) in (7) are replaced by their values at z = L,
i.e. αst(z) is replaced by αst(L). Thus equation (6) re-
duce to the coupled differential equations with constant
coefficients

d
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(
δαλ(z)
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(8a)
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(
δαλ(z)

)∗
+D∗(L)δαλ(z). (8b)

Note that in the present squeezed vacuum case the devia-
tion δαλ(z) is coupled to its complex conjugate (δαλ(z))∗
unlike the situation in the normal vacuum case (cf. [3]).
The solutions of (8) are given by

δαλ(z) = ξ1(L) exp [(β1(L) + iβ2(L)) z]
+ ξ2(L) exp [(β1(L)− iβ2(L)) z]

=
[(
δαλ(z)

)∗]∗
(9)

where
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1
2
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β1(L) = Re(C1),

β2(L) =
γ

2
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1
4

(
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∗
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)2
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,

C1 = B(L)− λ/c, C1 =
c

γ
C1 = B(L)− λ (10b)

and the dimensionless variables B(L),D(L) and λ are
given by (cB(L)/γ), (cD(L)/γ), and (λ/γ) respectively.

Multiplying (9) by eλt and in view of (5) we get,

δαλ(z, t) = eλt
{
ξ1(L) exp

[γz
c

(
β1(L) + iβ2(L)

)]
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[γz
c

(
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)]}
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where β1 = cβ1(L)/γ, β2 = cβ2(L)/γ, are normalized
quantities.

Using (11) into the boundary condition (3) we get

δαλ(0, t) = (1− T )e−λ∆t
{
µ1 exp

[
γL

c

(
β1 + iβ2

)]
+µ2 exp

[
γL

c

(
β1 − iβ2

)]}
(12)
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where µ1 and µ2 are given by
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=
1
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Now we define the quantities
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2
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and
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(14b)

Hence from equations (12, 13) we have

η1δα
λ(0, t) = η2

(
δαλ(0, t)

)∗
, (15)

which means that

η1 = η2e−2iφf . (16)

From equations (14, 16) we then get

1 = exp
(
−γ
c
λL
)

(1− T ) exp
[
γL

c

(
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where
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1
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(
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L = 2(` + L) and have used the relation c∆t = 2` + L,
with Br and Bi denote the real and imaginary parts of
the normalized quantity B(L) and D1 = exp(−2iφf)D.

Equation (17) implies that

2πin = −γ
2
λL+ ln(1− T ) +

γL

c
(Br − iβ2) + ln(Ω)

(19)

where n = 0, ±1, ±2, ...
For T � 1 (mean field limit), ln(1 − T ) ' −T and

hence from (19) we have the generalised result

λ = −iαn − k +
L

L(Br − iβ2) +
c

γL
ln(Ω) (20)

where αn = 2πnc/γL and k = Tc/γL.
In the case of the normal vacuum (N = |M | = 0),

equation (20) reduces to the result obtained in [3].
Note that k and the expression L(Br − iβ2)/L are of

order T (cf. Eq. (7)) and the expression c ln(Ω)/(γL) is
of order T and higher (cf. Eq. (18)), and since both ex-
pressions L(Br− iβ2)/L and c ln(Ω)/(γL) are functions of
λ hence equation (20) can be evaluated to order T in the
following single iteration form

λ = −iαn − k +
L

L
[
Br

(
λ = iαn

)
− iβ2(λ = iαn)

]
+

c

γL
ln[Ω(λ = iαn)]

≡ F (αn, |x|). (21)

The stationary solution is stable if and only if Re(λ) ≤ 0
for all values of n. In the region where the curve x = x(y)
has a positive slope, the resonant mode (n = 0) is always
stable but some of the off-resonant modes (n 6= 0) can
become unstable.

We have numerically solved equation (21) for various
set of the squeezed vacuum field parameters N and φ, and
the output field |x|. We first present the numerical results
of equation (21) in the normal vacuum (N = M = 0) in
the case γ‖ = 2γ⊥ in Figure 1. Note that from the OB
curve, Figure 1a, the system is unstable for x ∈ [1.1, 6.1]
and stable elsewhere. For |x| = 6.2, 7, 8 and 9, one can
find a region of αn in which Re(λ) > 0 (unstable solu-
tion) and elsewhere Re(λ) ≤ 0 (stable solution), Figure 1b.
For increasing |x| the system becomes more stable as the
positive Re(λ)-range decreases, and the system is com-
pletely stable for |x| = 9.9 ≈ C/2 as in [3] for γ‖ = γ⊥.
Alternatively, these results are presented in Figure 1c:
on and outside the boundary of the island the region is
stable (Re(λ) ≤ 0) and inside the island it is unstable
(Re(λ) > 0).

Now, in the squeezed vacuum case the results are pre-
sented in Figures 2–4. For N = 0.1, |M |2 = N(N +1) and
φ = 0, the system is unstable in the interval |x| ∈ [1.8, 5.7],
Figure 2. For 6 ≤ |x| < 7, the unstable region diminishes
with increasing |x| (Fig. 3). The result for N = 0.1 and
φ = π/2 shows the unstable region as an asymmetric is-
land around αn = 0 (Fig. 4).
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Fig. 1. (a) The characteristic relation between the transmitted intensity |x| and the incident intensity y in the normal vacuum
case (N = M = 0) for the absorptive case (θ = δ = 0) and C = 20. (b) αn versus Re(λ) for k = 0.1 and |x| = 6.2 ( ),
|x| = 7 (- - - -), |x| = 8 (· · · ·), |x| = 9 (− · − · −) and |x| = 9.9 ( ). (c) The unstable regions (inside the island) in the
(αn, |x|)-plane.

Fig. 2. The output intensity |x| versus the input intensity
y in the squeezed vacuum case for N = 0.1, C = 20 in the
absorptive case (θ = δ = 0) and for φ = 0 ( ) and φ =
π/2 (− − −).

Now, for the stability of the system near the phase
switching points: as we have seen in [1] for the absorp-
tive case the effect of fixing the input coherent field y and
changing the phase of the squeezed vacuum φ, the sys-
tem shows (for C > Cmax

crit [1]) a one-way switching (isola)
structure. For fixed y = 13 and at the switching-down
point A (|x| = 6.55 and φ = 48◦) in Figure 5a, one finds
the stationary solution is stable for certain values of αn
(Figs. 5b and 5c). For the adjacent point B (|x| = 7.2
and φ = 40◦) in Figure 5a, the result in Figures 5d and 5e
shows that the range for stable solution is wider than that
at the point A. For fixed y = 18 and at the switching-up
point A1 (|x| = 1.5 and φ = 32◦) in Figure 6a the range
of αn where the system is unstable, Figures 6b and 6c, is
smaller compared with that in Figures 5b and 5c at the
switching-down point A. As for the point B1 (|x| = 0.9
and φ = 40◦) in Figure 6a the system shows no unstable
behaviour for the positive off-resonant modes (Figs. 6d
and 6e).
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Fig. 3. (a) Same as Figure 1b but for N = 0.1, φ = 0, |x| =
6 ( ), |x| = 6.5 (- - -), and |x| = 7 ( ). (b) Same as
Figure 1c but for N = 0.1, φ = 0.

2.2 Dispersive case

For the homogeneous broadening case, the Maxwell-Bloch
equations in the dispersive case (where either the atomic
detuning δ or the cavity detuning θ or both are non-zero)
describing the dynamics of the optical bistable system in
squeezed vacuum are the same equations (1–3) but with
Go replaced by G [1],

G =
γ

2
(1 + 2N + iδ) . (22)

Following the same approach for the absorptive case but
taking the boundary conditions for θ 6= 0 (cf. Eqs. (1)
of [1]) to be

δα(0, t) = (1− T )δα(L, t−∆t) exp(−iθT )
= |δα(0, L)| exp(iφf ) (23)

where θ is the normalized cavity detuning. Hence equa-
tions (1–3, 22, 23) lead to an expression for λ formally

Fig. 4. (a) Same as Figure 3a but for φ = π/2, |x| = 7 ( ),
|x| = 8 (- - -), and |x| = 9 ( ). (b) Same as Figure 3b but
for φ = π/2.

similar to (21); i.e.

λ = −iαn − (1 + iθ)k +
L

L
(
Br,d − iβ2,d

)
+
γL

c
ln(Ωd) (24)

where Br,d and Bi,d are the real and imaginary parts of
Bd. The quantities in (24) are given as follows,

Bd = −Γ1

{(
λ+G

∗)
Γ2 − |x|2

(
λ+G

∗ − |M |eiφ
)
Γ3

}
β2,d =

c

2
[
|Bd − λ|2 − |D1,d|2 − (Re(Bd − λ))2

] 1
2
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Fig. 5. (a) |x| versus φ at fixed input value y = 13. The points A and B are (|x| = 6.55, φ = 48◦) and (|x| = 7.2, φ = 40◦)
resp., (b) αn versus Re(λ) for |x| = 6.55 and φ = 48◦ (N = 0.1, C = 20, k = 0.1 and θ = δ = 0). (c) |x| versus αn for φ = 48◦.
(d) Same as (b) but for φ = 40◦ and |x| = 7.2. (e) Same as (c) but for φ = 40◦.
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Fig. 6. (a) Same as Figure 5a but at y = 18. The points A1 and B1 are (|x| = 1.5, φ = 32◦) and (|x| = 0.95, φ = 40◦) resp.,
(b) same as Figure 5b but for |x| = 1.5 and φ = 32◦. (c) Same as Figure 5c but for φ = 32◦. (d) Same as Figure 5b but for
|x| = 0.95 and φ = 40◦. (e) Same as Figure 5c but for φ = 40◦.
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and

Ωd =
1
2

{
1 + exp

[
2
γL

c
iβ2,d

]

+
1
β2,d

(
−Bi,d + iD1,d

) [
1− exp

(
2
γL

c
iβ2,d

)]}
,

D1,d = Γ1

[
|M |eiφΓ2 + |x|2

(
λ+G

∗ − |M |eiφ
)
Γ ∗3

]
,

G = G/γ,

Γ1 = (1 + 2N)−1(|λ+G|2 − |M |2)−1

×
(

1 +
b1 |x|2
1 + δ2

)−1

Γ−1
2 ,

Γ2 = λ+ 1 + 2N +
1
4
|x|2 2λ+ b1(1 + 2N)
|λ+G|2 − |M |2

,

Γ3 = (1 + δ2)−1
(
G− |M |e−iφ

)
+

1
4
λ+G

∗ − |M |e−iφ

|λ+G|2 − |M |2
·

(25)

From equation (24) we notice that the change of the cavity
detuning θ has no direct effect in finding a stable station-
ary solutions but it has an indirect via the values of the
output field |x|. In general, Re(λ) > 0 corresponds to the
points of the curve x(y) with negative slope, so that all
these points are unstable while for points of the positive
slope with Re(λ) < 0 at n = 0, the resonant mode is
always stable there.

In the squeezed vacuum case the results are presented
in Figures 7–9. First, for the squeezed parameter N = 0.1,
|M |2 = N(N + 1), C = 40, θ = δ = 5 and φ = 0, the sys-
tem is unstable in the interval |x| ∈ [5, 9.25], Figure 7. For
30 ≤ |x| ≤ 90 the region of αn where Re(λ) is positive
decreases with increasing |x|, Figure 8a. The results for
φ = π/2 (Fig. 9) are qualitatively similar but with sepa-
rated unstable areas around |x| ' 60 (Fig. 9b). In general,
the region where Re(λ) > 0 (the area inside the stick-shape
curve, Figs. 8b and 9b) is smaller compared with the ab-
sorptive case (Figs. 3b, 5c, 5e, 6c and 6e). We also note
that in the dispersive case the unstable stationary solu-
tions (i.e. Re(λ) > 0) exist for positive values of αn only.
Also by fixing |x| the range of αn for which Re(λ) > 0
decreases as φ increases.

3 Self-pulsing and chaos

The linear stability analysis around the stationary state
in the previous section shows that, under certain condi-
tions and for some values of the system parameters, part
of the upper branch of the bistable curve can be unsta-
ble. What happens next is the following. The system (in
this unstable region of the upper branch) either precipi-
tates to the low transmission branch or exhibits oscillatory
behaviour. Note that this oscillatory behaviour is sponta-
neously produced in the sense that all the external (Mas-
ter) parameters are kept fixed. The analytical study of the

Fig. 7. |x| versus y for C = 40, N = 0.1, θ = δ = 5, φ =
0 ( ) and φ = π/2 ( ).

Fig. 8. (a) αn versus Re(λ) for C = 40, N = 0.1 δ = 5, φ = 0,
|x| = 30 ( ), |x| = 60 ( ) and |x| = 90 (−·− ·−). (b)
|x| versus αn for C = 40, N = 0.1, δ = 5 and φ = 0.
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Fig. 9. (a) Same as Figure 8a but for φ = π/2, |x| = 20 ( ),
|x| = 30 ( ) and |x| = 60 (−·−·−). (b) Same as Figure 8b
but for φ = π/2.

instability (cf. [6]) for absorptive and dispersive bistabil-
ity in the normal vacuum shows that the instability of the
upper positive slope branch may exist if at least one of
the off-resonant modes is unstable. There are, essentially,
different three types of unstable behaviour:

(1) bifurcation behaviour which means transition in a con-
tinuous way to a new steady state,

(2) self-pulsing oscillatory behaviour which is a non-
stationary periodic behaviour in time,

(3) chaotic behaviour which is a non-stationary behaviour
but not periodic in time.

In this section we investigate the self-pulsing and
chaotic behaviour for the model equations (2) in refer-
ence [1] in the dispersive case (since this is more promi-
nent than the absorptive case, as in the normal vacuum
case [4]).

Within the mean field limit, we integrate the field
equation, equation (2a) of [1] with respect to z and use
the boundary conditions equations (1) of [1]. The result is

dα
dt

= −ikθα− k(α−EI)− gn0J−. (26a)

Fig. 10. |x| versus y for C = 80 000, N = 0.1, δ = 374, θ = 340
and for φ = 0 ( ), φ = π/2 ( ) and φ = π ( ).

When the equations of the atomic variables (Eqs. (2b, 2c))
of [1]) are spatially integrated in the mean field limit, we
get

dJ−
dt

= −GJ− + 2gαJz − γMJ+ =
(

dJ+

dt

)∗
(26b)

dJz
dt

= −γ‖Jz −
1
2
γ − g(αJ+ + α∗J−) (26c)

where k = c/L is the cavity damping coefficient and the
time-dependent variables α, J±, Jz are space-averaged
quantities, α = L−1

∫ L
0
α(z, t)dz, etc. Now, we examine

the dynamical behaviour of the model equations (26) in
the two cases of adiabatic and non-adiabatic regimes.

3.1 Adiabatic behaviour

Here it is assumed that the relaxation time γ−1
⊥ for the po-

larization components J± is the shortest of all the other
characteristic times (γ⊥ � γ‖, k, kθ, kC). Hence by sub-
stituting in equations (26), for J± by their stationary val-
ues given by (1b), and by putting the normalised output
field x(t) = u+ iv we reach the following reduced system
of ordinary differential equations,

k
dJz
dτ

= −1
2
− (1 + 2N)Jz −

1
4
Jz

×
[

1
4

(
(1 + 2N)2 + δ2

)
− |M |2

]−1

×
{

(1 + 2N)(u2 + v2)− 2|M |
×
[
(u2 − v2) cos(φ) + 2uv sin(φ)

]}
(27)
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Fig. 11. The case of C = 80 000, N = 0.1, θ = 340, δ = 374,
k = 1/4 and φ = 0. (a) The output intensity |x|2, at fixed
y = 2334 (point A1 in Fig. 10), versus the dimensionless time
τ . (b) The corresponding phase space (u, v)-plane. (c) Poincaré
map of the solution at Jz = −0.36.

du
dτ

= θv − u+ y + 2CJz

×
[

1
4

(
(1 + 2N)2 + δ2

)
− |M |2

]−1

×
[

1
2

(1 + 2N)u+
1
2
vδ − |M | (u cos(φ) + v sin(φ))

]
(28)

dv
dτ

= −θu− v + 2CJz

[
1
4

(
(1 + 2N)2 + δ2

)
− |M |2

]−1

×
[

1
2

(1 + 2N)v − 1
2
uδ − |M | (u sin(φ)− v cos(φ))

]
(29)

Fig. 12. Same as Figure 11 but for y = 1293.

where k = k/γ, τ = kt. Now we present the numerical
integration of the system (27–29) for the output field x =
u + iv for the set of parameters θ = 340, δ = 374, C =
80 000, k = 1/4 (as in the normal vacuum case [7]) and
for squeezed vacuum field parameters N = 0.1 and φ = 0,
π/2, π. The steady state OB curves in this case are shown
in Figure 10.

In the case of φ = 0 and for the control parameter
|y| = 2334 (point A1 in Fig. 10) the result for the out-
put intensity |x|2 against τ shows stable regular oscilla-
tions, Figure 11a, and only one loop in the (u, v)-plane,
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Fig. 13. Same as Figure 11 but for y = 1080.2.

Figure 11b, with the Poincaré map shown in Figure 11c.
For decreasing values of |y| (points A2 and A3 in Fig. 10)
the stable regular oscillations become unstable and the
system approaches a new oscillatory state with period
doubling with two loops in Figure 12 and four loops in
Figure 13b. For a further decrease of |y| = 990 (point
A4 in Fig. 10) the oscillations become aperiodic and the
system shows then a chaotic behaviour, Figure 14, where
the power spectrum P (ω) (Fourier transform of |X(t)|2)
is shown in Figure 14d.

For φ = π/2, similar results are obtained at the points
B1−B3 in Figure 10 and the chaotic behaviour at the point
B4 is similar to that of φ = 0 (Figs. 14a–14d) but the
phase-space contours and the Poincaré map are slightly
different; Figures 15a–15d.

As for the case of φ = π and for |y| = 2334 (point C1

in Fig. 10) the results [8] showed a one-loop oscillatory be-

Fig. 14. (a–c) Same as Figures 11a–11c but for y = 990.
(d) The power spectrum of the output intensity versus the
frequency.

haviour. Note that for the values of |y| less than or greater
than 2334 on the upper branch, the output field intensity
decays (and the single loop becomes a single point in the
(u, v)-plane) which is a manifestation of the system pre-
cipitating to the lower branch.

3.2 Non-adiabatic behaviour

In this case the full model equations of (26) for the field
(α and α∗) and the atomic variables Jz,± are solved nu-
merically (using the Runge-Kutta Merson method). For
the same set of parameters as in the adiabatic regime the
results are presented in Figures 16 and 17. Figure 16a
represents the time dependent behaviour for the output
intensity |x|2 = u2 + v2 versus the dimensionless time τ ,
while Figure 16b represents the 3-dimensional trajectory
(u, v, Jz)-plane and Figure 16c represents the Poincaré
map of the fixed plane, Jz = −0.0545. The phase-space
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Fig. 15. Same as Figure 14 but for φ = π/2 and y = 802.

diagram (Figs. 17) shows that the system exhibits a
higher-order quasi-periodic behaviour, as a result of a
higher-order system structure [9]. It shows a two-periodic
behaviour lies on a two-torus. In this two-periodic trajec-
tory, if the simulations were run longer, it becomes more
densely filled in, Figure 17b. For |y| = 2334 (point A1 in
Fig. 10) the number of oscillations is 80, Figure 17a, and
as |y| decreases to be 1293 and 1080.2 (points A2 and A3 in
Fig. 10) the number of oscillations decreases to be 53 and
50 (figures similar to Fig. 17a). For |y| = 990 (point A4

in Fig. 10) the number of oscillations becomes 97. As for
φ = π/2, y = 1293, 990, 850 and 802 (points B1, ...,B4 in
Fig. 10) we find that the number of oscillations decreases
to be 74, 57, 53, and 53 with no increase at the point B4

as happened at A4. For φ = π and y = 2334 the number
of oscillations becomes 52 (note that we have presented
only the figures for the case φ = 0, but similar pattern
essentially is found for other values of φ [8]).

4 Summary

We have presented a linear stability analysis of the
Maxwell-Bloch equations modelling a bistable system in a

Fig. 16. The case of C = 80 000, N = 0.1, θ = 340, δ = 374,
y = 2334 and φ = 0. (a) The output intensity |x|2 (point
A1 in Fig. 10) versus the dimensionless time τ . (b) The 3-
dimensional trajectory (u, v, Jz)-plane. (c) The corresponding
Poincaré map of the solution at Jz = −0.0545.

ring cavity configuration and in contact with a squeezed
vacuum field. The investigation presented generalise ear-
lier work in the normal vacuum case (cf. [6]). The squeeze
phase parameter induces an asymmetry in the structure
of the unstable region compared with the normal vacuum
case. Also, the stability of the solution has been examined
near the “phase switching-up and -down” points where we
have found a stable solution for some of the off-resonant
modes. The self-pulsing behaviour for the system was ex-
amined in both the adiabatic and non-adiabatic regimes.
The structure of the self-oscillations via period doubling
and its termination to chaotic behaviour for certain range
of the system parameters were examined in detail. Specif-
ically, in the non-adiabatic regime the phase-space dia-
gram shows that the system exhibits a higher-order quasi-
periodic behaviour which lies on a two-torus.
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Fig. 17. (a) The phase-space, (u, v)-plane, for C = 80 000,
N = 0.1, θ = 340, δ = 374 and y = 2334. (b) A zoom view at
a part of the (u, v)-plane.

In general, the study presented here for the non-linear
dynamical system of OB with squeezed vacuum field in-
puts has its relevance and importance to the recent field
of interest for optical scientists in the identification of
chaos and its use in optical communications. For example,
chaotic laser signals in communications is used to generate
complex signals needed in the current complex systems as
it can be used to synchronize a transmitter and receiver
to transmit encrypted data [10]. Similar synchronization
of chaotic behaviour in non-linear biological systems is
used to exhibit stable cycles of gene activity (i.e. healthy
life) [11]. Also, chaotic patterns are used to develop a data-
coding scheme in signal communication coding algorithm,
e.g. to ease crowding on the airwaves [12].
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